Local Convergence of Random Graph Colorings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Convergence of Random Graph Colorings

ABSTRACT. Let G = G(n,m) be a random graph whose average degree d = 2m/n is below the k-colorability threshold. If we sample a k-coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold dk,cond, the colo...

متن کامل

Graph colorings with local constraints — survey *

ontents We survey the literature on those variants of the chro0 Introduction matte number problem where not only a proper coloring o.l Standard definitions has to be found (i.e., adjacent vertices must not receive Q.2 Notation for vertex colorings the same color) but some further local restrictions are img ome variations posed on the color assignment. Mostly, the list colorin n „ , , , , ^ ° , ...

متن کامل

Graph colorings with local constraints - a survey

Zsolt Tuza y Latest update : September 8, 1997 Abstract We survey the literature on those variants of the chromatic number problem where not only a proper coloring has to be found (i.e., adjacent vertices must not receive the same color) but some further local restrictions are imposed on the color assignment. Mostly, the list colorings and the precoloring extensions are considered. In one of th...

متن کامل

Poisson convergence and random graph

1. Introduction Approximation by the Poisson distribution arises naturally in the theory of random graphs, as in many other fields, when counting the number of occurrences of individually rare and unrelated events within a large ensemble. For example, one may be concerned with the number of times that a particular small configuration is repeated in a large graph, such questions being considered...

متن کامل

The strong edge colorings of a sparse random graph

The strong chromatic index of a graph G is the smallest integer k such that the edge set E( G) can be partitioned into k induced subgraphs of G which form matchings. In this paper we consider the behavior of the strong chromatic index of a sparse random graph K (n, p), where p = p(n) = 0(1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorica

سال: 2017

ISSN: 0209-9683,1439-6912

DOI: 10.1007/s00493-016-3394-x